RN o HEVATER

the system

DESPEYROUX
Janet INCERPI
ie PASCUAL

ick BORRAS
ique CLEMENT
illes KAHN

ér

G
Bernard LANG

DECEMBRE 1987

Val

Do
Thierry

S

s ‘=
= g E
Z.
=
-




CENTAUR: the system

Patrick Borras, Dominique Clément, Thierry Despeyroux,
Janet Incerpi, Gilles Kahn, Bernard Lang, Valérie Pascual

Abstract

This paper describes the organization of the CENTAUR system and its main compo-
nents. The system is a generic interactive environment. When given the formal specifica-
tion of a particular programming language — including syntax and semantics — it produces
a language specific environment. This resulting environment includes a structure editor, an
interpreter/debugger and other tools, all of which have graphic man-machine interfaces.

CENTAUR is made of three parts: a database component, that provides standardized
representation and access to formal objects and their persistent storage; a logical engine that
is used to execute formal specifications; an object-oriented man-machine interface that gives
easy access to the system’s functions.

CENTAUR is essentially written in Lisp (Le_Lisp). The logical engine is Prolog (Mu-
Prolog). The man-machine interface is built on top of the virtual graphics facility of Le_Lisp,
itself primarily implemented on top of X-Windows.

CENTAUR: le systéme

Résumé

Cet article décrit 'organisation du systéme CENTAUR et ses composants principaux.
Ce systéme est un environnement interactif générique. Lorsqu’on lui fournit la spécification
formelle d'un langage de programmation domnné -spécification sémantique aussi bien que
spécification syntaxique— il produit un environnement spécifique pour ce langage. L'environ-
nement ainsi construit contient un éditeur structuré, un interpréte/metteur-au-point et d’autres
outils, le tout muni d’une interface graphique.

CENTAUR comprend trois parties: un composant de type base de données, qui fournit
une représentation et des moyens d’acces standard aux objets et & leur sauvegardes; une
machine logique qui sert & exécuter les spécifications formelles; une interface homme-machine
orientée objet qui permet un acceés agréable aux fonctionnalités du systéme.

CENTAUR est pour ’essentiel implanté en Lisp (Le_Lisp). La machine logique est Prolog
(Mu-Prolog). L’interface homme-machine est construite 4 partir du terminal graphique virtuel
de Le_Lisp, lui-méme implanté au-dessus du protocole X-Windows.

M D PAPIER RECUPERE ET RECYCLE



CENTAUR: the system

P. Borras!, D. Clément?, Th. Despeyroux,
J. Incerpi, G. Kahn, B. Lang?®, V. Pascual

INRIA, Sophia—Antipolis
06565 Valbonne CEDEX, FRANCE?

This paper describes the organization of the CENTAUR system and its main
components. The system is a generic interactive environment. When given the
formal specification of a particular programming language — including syntax and
semantics — it produces a language specific environment. This resulting environment
includes a structure editor, an interpreter/debugger and other tools, all of which
have graphic man-machine interfaces.

CENTAUR is made of three parts: a database component, that provides stan-
dardized representation and access to formal objects and their persistent storage;
a logical engine that is used to execute formal specifications; an object-oriented
man-machine interface that gives easy access to the system’s functions.

CENTAUR is essentially written in Lisp (Le_Lisp). The logical engine is Prolog
(Mu-Prolog). The man-machine interface is built on top of the virtual graphics
facility of Le_Lisp, itself primarily implemented on top of X-Windows.

1. Introduction

The CENTAUR system is a generic interactive environment. When provided with the
description of a particular programming language - including its syntax and semantics — it
produces a language specific environment. The resulting environment comprises a structure
editor, an interpreter/debugger and other tools, all of which have graphic man-machine in-
terfaces. We believe that designing new languages — whether large or small, specialized or
general — will be a very common activity in the future. Hence it makes sense to build such a

system.
In the design of CENTAUR, we are faced with at least three challenges:

i) Is it possible to use as the description of a programming language a formal spectfication
in the sense used by researchers in programming language semantics?

i1) Is it possible to obtain on that basis an efficient system, both in terms of speed and in
terms of memory space?

ii1) Is it possible to create a man-machine interface that is comparable in convenience to
what can currently be found in dedicated commercial systems, say on a MacIntosh?

1 SEMA, Paris

2 SEMA, Sophia-Antipolis

3 INRIA, Rocquencourt

t This research is partially supported under ESPRIT, Project 348.

1



This papei- describes the CENTAUR system. The conclusion presents preliminary an-
swers to the questions above.

1.1. Outline of the CENTAUR architecture

The architecture of the Centaur environment generator is based on a decomposition into
three classes of functions:

— a kernel for the representation and manipulation of structured objects,
— a specification level to support both the syntactic and the semantic aspects of languages

— a user interface that takes care of all interactive communication between the system and
its users.

The kernel plays a central part in this architecture because it is intended to be used,
directly or indirectly, by all other components of the system. Every structured object is
represented within the system as an abstract syntax tree that is manipulated with primitives
of the kernel.

1.2. The kernel

The purpose of CENTAUR's kernel is to support symbolic manipulation of structured
documents. By symbolic manipulation we mean destructive manipulation, typically used
while editing documents, as well as evaluation, more common in semantic processing. The
kernel of the CENTAUR system is made of two specialized components:

- an abstract machine that handles syntactic aspects, called the Virtual Tree Processor or
VTP [21], '

- a logical machine that handles semantic aspects, i.e. evaluations of all kinds. At this
stage the logical machine is a Prolog interpreter.

These two components are intended to be used as co-routines. They are connected
through an interface that contains two classes of primitives:

— control primitives to call Prolog from within the Virtual Tree Processor and to call the
Virtual Tree Processor from within Prolog,

— transformation primitives to perform coercions between Virtual Tree Processor trees and
Prolog terms.

1.3. The specification level

To generate an interactive programming environment for a given language one must pro-
vide specifications for its concrete syntax, abstract syntax, and semantics. These specifications
are themselves written in appropriate formalisms.

1.3.1. Specifying syntaz

- The specification of syntax contains the components that are necessary for deriving a
structure-oriented editor. After compilation of this specification, one obtains a scanner, a
multi-entry parser, a pretty-printer, and abstract syntax tables. The scanner and parser are
used to transform a textual representation into a structured representation. The unparser,
or pretty-printer, is used to transform a structured representation to a textual form. The
abstract syntax tables are used to check the validity of editing operations.

The specifications of concrete and abstract syntax, together with their relationship, are
presently written in METAL [20], a formalism developed for the MENTOR system [10] [11].
A METAL specification is a collection of grammar rules, with annotations that specify what

2



abstract syntax trees should be synthesized. Pretty-printing of abstract trees is defined in
the PPML formalism [25]. A PPML specification is a collection of unparsing rules associated
with abstract syntax patterns.

In the future we hope to merge all syntactic aspects of language definition within a single
formalism [15].

1.3.2. Specifying semantics

To derive systematically a language-specific interactive programming environment it is
necessary to go beyond syntax and introduce semantic specifications. For example:

— from a specification of static semantics, one wants to derive a type checker and context-
dependent interactions,

- from a specification of dynamic semantics, one wants to derive an interpreter and a
symbolic debugger.

The semantics of a programming language may be specified with a variety of formalisms.
We have experimented with a formalism based on Natural Deduction that we call Natural
Semantics [19]. A semantic specification is written in TYPOL [6], the computer version of
Natural Semantics. It is then type-checked and compiled into an executable form. At the .
present time Typol specifications are compiled into Prolog clauses.

1.4. Principles of the man-machine interface

The functions of CENTAUR are accessed in two non-exclusive ways: through direct
function calls and through the man-machine interface. The design of the interface presupposes
that the user is interacting with CENTAUR via a modern workstation, using a keyboard, a
mouse, and a high resolution screen. Most of the time, the user makes his intentions known
using the mouse. When a mouse button is depressed, the location of the mouse determines
what graphic object the user is talking to and a finite automaton takes control of the mouse
until the button is released.

A variety of graphic objects are used in the man-machine interface: menus offering various
options, buttons to control execution, pseudo-terminals, etc. More specific to CENTAUR are
the views where abstract syntax trees are displayed!. Structure editing as well as text editing
are available in a CENTAUR view. Within a view, a subexpression is emphasized: it is printed
in boldface. This subexpression is the subject of most commands. The simplest gesture with
the mouse is to point at an expression to emphasize it.

The user is normally manipulating several formalisms at the same time. Each formalism
has its own structure and its own specific environment. In fact, in a single CENTAUR view
more than one formalism can be present: typically annotations are interspersed within the
text of a program. The operations that are permitted and the menus that pop up all depend
on the formalism of the currently emphasized expression.

Furthermore, the various objects that appear on the screen are usually not independent.
For example, one view may display a source program, and another view the result of translat-
ing this program into an abstract machine code; or two views may look at the same abstract
syntax tree with different pretty-printers. A network of such dependencies is maintained auto-
matically to assist the user in keeping a consistent screen. This logical control of the interface
relies for the time being on the Prolog component of CENTAUR.

! Trees are displayed as text, graphic representations have not yet been considered.

3



1.5. Implementation Issues

s CENTAUR is implemented in Lisp and Prolog. It runs on standard modern workstations.
It is also possible to run CENTAUR on a centralized time-shared computer and retain a high
quality graphics interface because the man-machine interface is built on top of X-Windows
[12].

1.5.1. Using Lisp

The design and implementation of CENTAUR are based on our experience with the
design, implementation, and actual use of a first generation system called MENTOR (10]
that was implemented in Pascal. The software technology used for environment generators
is clearly based on symbolic computation. Traditional languages such as Fortran, Pascal, or
Ada are not well suited for implementing such applications.

The selection of an appropriate implementation language hinges around the following
issues:

automatic memory management (garbage collection),

type discipline (strict vs. lax),
- functional parameters and variables,

modularity and separate compilation,

exceptions (for program robustness and for backtrack programming),

dynamic linking of program modules.

!

Several of these issues are well solved in a functional programming language like ML [22].
An efficient implementation of ML was unfortunately not available at the start of the project.
Furthermore it was not clear whether such a high-level language with a very rigorous typing
structure would allow the efficient use of sophisticated programming techniques that had aot
been built into the language in advance.

After some experimentation with C it was decided to use Lisp as a flexible low-level
language for the implementation for the VTP. The Lisp dialect actually chosen is Le_Lisp [3].
This dialect of Lisp was selected for its availability on a large variety of machines and the
ease with which it is ported on new hardware. Furthermore the Le Lisp compilers produce
efficient code. '

1.5:2. Using Prolog

Early experiments had shown that Prolog was a convenient target language for the com-
pilation of semantic specifications [7]. These experiments were confirmed repeatedly during
the project development. In the context of an interactive programming environment mostly
implemented in Lisp, using Prolog as an inference system implies that Prolog may be used
and accessed from within Lisp, and in turn, that Lisp may be called from within Prolog. Then
Prolog is available as a coroutine to Lisp.

An immediate advantage of this strategy is the possibility of experimenting with different
Prolog engines independently of the rest of the kernel. This has already proven useful in
switching from a first Prolog interpreter, C-Prolog of Edinburgh University [27], to a more
powerful Prolog system, the Mu-Prolog of Melbourne University {24]. In the near future we
hope to change over smoothly to compiled Prolog, obtaining a substantially faster system.

This approach, however, requires coercions between different internal representations. For
example a Virtual Tree Processor abstract tree must be transformed into a Prolog term. Using
directly the primitives for constructing Prolog terms (rather than the Prolog reader) the cost

4



of this coercion, both in time and in memory space, is roughly that of a copy. One may wonder
whether a more integrated approach, where every object has a unique representation that is
used by all processors, would not be superior. Without entering this debate, we are convinced
that even with a tighter integration it is not possible to avoid transformations, because the
proper choice of representation of structured objects depends on what manipulations have to
be performed on these objects. This need for multiple representations seems to be inherent
in the manipulation of symbolic objects.

From Lisp one uses Prolog in a straightforward manner. Goals are sent to Prolog via a
buffer, the Prolog mailbox, with a call to the masltoprolog procedure. Then to solve this goal,
one calls a resolve that:

- fetches a goal in the Prolog mailbox
- silently resolves the goal

- then returns to its caller. Later calls will ind Prolog in the exact state where it was left.
Hence Prolog and Lisp behave as two co-routines. Evaluable predicates may be written
in Lisp. This is in particular how Prolog is given access to CENTAUR’s man-machine
interface. 4

1.5.3. Using a modern workstation

The development and effective use of CENTAUR demand, in its current form, a computer
system with a large memory (8 megabytes), reasonable computing power, and a graphic
interface. Modern workstations provide the appropriate hardware. Code written in Le Lisp is
perfectly portable but graphic interfaces are far from standardized. To isolate the programmer
from system variations, Le_Lisp includes a virtual multiwindow graphic terminal. CENTAUR
was initially developed using software from Brown University [26] to implement the Le Lisp
graphic interface. A new binding of the interface has been implemented on top of X-Windows,
a graphics software package from MIT [12]. In this new incarnation, CENTAUR may run on
one computer while it is accessed via a distinct graphic workstation. Using X-Windows
should make CENTAUR available on most workstations, with the unfortunate drawback that
X-Windows is not entirely stabilized today.

2. The database

The first component of the kernel is the Virtual Tree Processor or VIP. The VTP de-
fines and implements efficiently a protocol supporting creation, manipulation, and persistent
storage of abstract syntax trees.

2.1. Structure of the VTP

As a protocol, the VTP is a collection of abstract data types. Certain functions that
are not logically necessary (for example iterators) are included to obtain a far more efficient
implementation. The protocol is open in that it provides a method for creating new types of
objects to enrich the VTP.

The specification of the various data types yields a natural modularity to the VTP.
Another level of modularity results from following an object-oriented approach. Many objects
provided by the VTP carry with them their own dynamic types. These types are organized
hierarchically. For example, a generic pretty-printer is defined for all abstract syntax trees.
When a new formalism is defined, the abstract syntax trees pertaining to this formalism
are pretty-printed with the generic pretty-printer. As specific rules are added for the new
formalism they supersede the default rules used by the generic pretty-printer. The main

5



advantage of this architecture is to allow eztending the system without any alteration of
. existing code, as long as the type hierarchy is extended.
5. Main concepts of the VTP
The abstract concepts defined and implemented in the VTP are motivated by a number
of earlier experiments on syntax-directed document manipulation, either with our MENTOR.

system or with other systems essentially built on the same syntactic base.

The VTP is organized around very few concepts. A formalism embodies the notion of
an abstract syntax. A tree belongs to one formalism, but it may have subtrees in other
formalisms, for example using the gate mechanism. Conterts materialize the idea of one or
several locations in a tree. Annotations may be hooked to abstract syntax trees to retain
some information without modifying their structure.

2.2.1. Constructing a formalism

An abstract syntax is represented in the VIP by an object in the class formalism. A
formalism is made of objects in the classes operator and phylum, where a phylum is a set
of operators. Primitives are available to create a new formalism and populate it with new
operators and phyla. When creating an operator, its arity and the phyla of its operands must
be provided. Operators come in three kinds: operators with a fixed arity (pure constructors),
list operators where the list may not be empty (associative constructors), and list operators
.where the list may be empty (there exists also a neutral element). It is possible to iterate
over all operators and over all phyla in a formalism, and over all operators in a phylum.

When all phyla and and all operators of a formalism have been given, the formalism is
declared complete. Then a number of global calculations are performed that result in faster
tree traversals and more compact tree representations in persistent storage. The formalism
so constructed has a persistent representation: it may be saved in a file and read in at a later

time.

The natural way to create a new formalism is to use a specification language. A compiler
for the specification language will then use the primitives provided by the VTP to create the
formalism. For example, the language METAL is currently used to specify simultaneously the
concrete and abstract syntax of a language. It is possible to experiment with other syntax

- specification languages (e.g. SDF [15]) without changes to the rest of the system because all
other components of CENTAUR are only interfaced with VTP objects.

2.2.2. Trees

From an operator and an adequate number of subtrees one can create a new tree. The
tree is then said to belong to the formalism of its top operator. The VTP provides primitives
to navigate in a tree (such as down, left, right, up, etc.) and to modify the tree: replacing
a subtree by another one, inserting and deleting elements in lists. All modifications fail if
they are incorrect with respect to the abstract syntax. Syntax checking is strictly local and
very fast. It is possible to iterate efficiently over all subtrees of a tree. Finally, trees have a
representation in persistent storage.

The VTP defines a gate mechanism to associate values to the leaves of an abstract syntax
tree. For example, identifiers or integer literals are zero-ary operators: their value is obtained
in traversing a gate. In this way, the value associated to a leaf may be any VTP object, in
particular an abstract syntax tree in a different formalism.

Typically, trees will be constructed by a parser and modified by interactive editing. The
VTP defines the protocol that any parser must use to create trees, but it is of course not
committed to any particular kind of parser. Likewise it provides the primitives to build an
interactive structure editor but it does not enforce a specific mode of interaction.

6



2.2.3. Contezts

An essential aspect of the VTP is that it supports imperative manipulation of formal
documents. Thus the abstract representation of a document is not a recursive structure that
is built and processed in a purely applicative way. Rather it is a kind of database to explore
and modify. As a result it is frequently necessary to keep references to places of interest
in the manipulated structure. Consider a very frequent operation during interactive editing,
memorizing a location in an abstract syntax tree. One possibility is to use as designator a value
of class tree. Using this value as argument to the appropriate VTP primitive, it is possible
to move to adjacent nodes (father, sons, siblings), or to modify the tree locally (by insertion,
deletion, replacement, etc.). However a modification of the tree may have unexpected (or
unwanted) side-effects. Assume that the tree value P were also used to designate a location
within a larger tree T. After a modification of T that changes the subtree located where P
is (by deletion or replacement), the designator P still denotes the old subtree. Hence it is no
longer connected to the original tree T. Thus the designation of the location within T is lost,
which is usually not the desired effect in an editing environment.

This example shows that pointing at a sub-object within a structured object can denote:
a. the sub-object that is placed at the designated location,
b. or the location of that sub-object within the larger object.

We call contexts values referring to locations (b) rather than sub-objects. A context value
is thus a place within a mutable object, where a component of that mutable object may be
stored [1]. Several classes of contexts are defined in the VTP. The classes subtree, annotation,
and gate correspond to the mechanisms used in constructing trees. The class sublist designates
several consecutive locations in a list.

In the current implementation of the VTP, contexts do not have a persistent representa-
tion. A more abstract notion of context that will denote an arbitrary set of disjoint locations
will be added to the VTP in the future. It will have a persistent representation so that, for
example, the state of an editing session may be saved. '

2.2.4. Annotations

Annotations are a more formal and structured view of the old concept of “property lists”.
Property lists were introduced in Lisp. The idea was to attach to atoms a list of independently
managed tagged values, where each tag or “property” characterizes the role of the value.

In the VTP, the role of an annotation must declared by first defining a decor. For example,
one can define a decor called “pragma” that can be used to attach string annotations to nodes
of abstract syntax trees representing Pascal programs. So the definition of a decor includes
its name (e.g. pragma), the type of the annotation itself (e.g. string) and the type of objects
that may be decorated by annotations in this decor (e.g. Pascal programs).

Annotations were originally introduced as a means to handle comments in a structured
way. From various applications came the need of a more general mechanism to decorate
abstract representations. Using annotations for document organization and manipulation is
discussed at length in [10]. One important application is to use annotations to store attributes,
in the precise sense of attribute grammars [28].

In the VTP, the role of decors and annotations has been extended to yield a general
structuring mechanism. It is possible to define decors and annotations for other classes of
objects than trees. For a given class of objects, new decors may be dynamically created, and
then annotations corresponding to that new decor may be attached to the objects in the class.
So annotations are essentially a way to define dynamically and independently optional new

7



fields or properties. In the VTP, annotations are used as a modularity device to extend the
. functionality of classes without interacting with their already existing semantics.

2.3. Discussion

The VTP is a stable and trustworthy component of CENTAUR. Further work on the VTP
will take place in several directions: improving error handling, adding new functionalities,
improving the overali efficiency. :

New functionalities are added sparingly. As indicated above, a more abstract notion of
context will be added to the VTP. To keep track of the various trees constructed during a
session, a notion of VTP variable distinct from Lisp variables will be developed as well. In an-
other area, the mechanism of annotations needs extension, for example so that all annotations
in a given decor might be accessed without traversing the annotated tree.

Efficiency is improved on a demand basis. The performance analysis of the VTP is
generally difficult, because various processors use the VTP in fairly different ways. Inefficien-
cies often point to an inadequate choice of the primitive functions for some class. This has
motivated adding several iterators to the VTP. Functions performing translations between
computational and persistent storage must be improved to be faster and to produce even
more compact representations.

3. Using the database

This section presents three components of CENTAUR, with a special emphasis on the
way they are using the VTP. The first component is the METAL compiler, that creates a new
formalism and a parser/constructor for it. The second component is the PPML compiler,
is a tool that generates a pretty-printer from a symbolic description of pretty-printing rules.
The generated parser and pretty-printer are both subroutines of a third component, a simple
structure oriented editor for abstract syntax trees.

3.1. The METAL compiler

METAL is a language used in specifying new formalisms. The METAL specification of a
new formalism is made of three parts:

(1) a definition of the abstract syntax of the new formalism in terms of operators and phyla.
The operators label the nodes of the abstract trees that represent syntactically valid
structures of the defined formalism. An operator is defined by its arity and by the type
of its sons. The phyla are non-empty sets of operators. They are used to define the type
of the sons of each operator.

(2) a definition of the concrete syntax of the new formalism in terms of BNF rules. These
rules are used to create a parser for the defined language,

3) a definition of the tree gemerator of the new formalism in terms of iree building func-
tions. These functions specify what tree corresponds to each syntactic component of the
language, i.e. they connect concrete syntax rules and abstract syntax. A tree building
function is associated to each production rule in the grammar and it is invoked whenever
the rule is used to parse.

The compilation of a METAL specification creates a formalism (in the precise sense of
the VIP), a concrete syntax parser, and a Lisp program that will construct abstract syntax
trees, using the VTP primitives, as a program text is being parsed. In fact each component
of a METAL specification is compiled with a specialized compiler and it is possible to invoke
these compilers separately if desired.

3.1.1. _Abstract syntaz compiler



To define 2 new language in METAL one has to specify at least an abstract syntax. Then
this definition is compiled with the abstract syntaz compiler. This compiler constructs the
internal representation of an abstract syntax, i.e. a VIP object in the class formalism. Then
it is possible to save the new formalism on external storage, currently as a table.

3.1.2. Concrete syntax compiler and tree construction

To compile the concrete syntax part of a METAL program it is necessary to have compiled
the abstract syntax part first. Indeed the defined formalism is one of the arguments needed
to call the concrete syntax compiler. At the current stage, METAL concrete syntax rules are
compiled into rules in a format suitable for input to YACC. An action number is uniformly
associated to each tree building function. Additionally the compiler produces a list of all
keywords used within the concrete rules. This list is useful in constructing a lexical analyzer
using LEX.

To complete the compilation of a METAL specification it is necessary to compile the tree
building functions that specify the connection between the abstract syntax and the concrete
syntax of a formalism. This compilation again can take place only after the formalism has
been created. Tree building functions are compiled into Lisp code that uses standard VIP
primitives. -

When parsing a program in a language F, for each reduction performed by the parser the
associated semantic action is executed and a tree is constructed. In fact this transformation
from concrete form to abstract form is achieved through an intermediate data structure. The
output of the parser is a list of action numbers!, where each action number correspond to
a semantic action. Then the output of the parser is used by the abstract tree generator to
execute the adequate Lisp code that was generated during the compilation of the tree building
component of METAL.

3.1.3. Discussion

The METAL compiler has been exercised on several large languages, for example Pascal,
Ada, and C. It is a satisfactory component of CENTAUR but several major improvements
are necessary:

— METAL is too verbose: there is no star notation for lists, routine cases deserve a more
compact notation.

- METAL should include lexical analysis.

— A better parser generator than YACC should be used: hard work on syntax rules would
be spared, the METAL specification would be simpler.

- The METAL compiler should be more incremental: changing one rule or a few rules
should involve little processing.

- The METAL environment should contain more consistency checks.

Another formalism to specify formalisms, called Syntax Definition Formalism, SDF for
short, has been designed and implemented by our partners from CWIin Amsterdam [15]. This
new component should be integrated with CENTAUR within a short time. In SDF concrete
and abstract syntax are defined simultaneously and there are no restrictions on what context-
free grammar may be used. Furthermore, the scanners and parsers are built incrementally
[16][17]. As a consequence, generating an environment for a new language will be far more
comfortable. ' :

1 Tt is not a list of production numbers because several productions may in fact invoke the
same action.



3.2. The Ppml compiler

%% A special purpose formalism, PPML [25], is used to associate concrete layouts to abstract
‘structures. The formalism aims at specifying in a compact but readable fashion:

— the desired layout for an abstract syntax tree,

alternate layouts and how to switch from one to another if the page is not wide enough,

- how the required level of detail affects what is being shown,

what subtree is intended when the user points at a given token on the screen.

Like the METAL compiler, the PPML compiler has been experimented on large languages
such as Pascal, Ada, and C.

3.2.1. Pretty-printing rules
Roughly speaking, a PPML specification is a list of pretty-printing rules of the form

pattern — format

where the lefthand side of the rule is an abstract syntax tree containing variables, i.e. a pat-
tern, and the righthand side is a formatting specification. The rules corresponding to more
specific patterns must be listed before those concerning more general situations. PPML speci-
fications can be organized in chapters, with local constant declarations. A PPML specification
imports a language’s abstract syntax. To restrict the applicability of rules, all phyla of the
language are known, and other special-purpose phyla may be added.

A pretty-printing pattern is either a variable or an arbitrary abstract syntax tree that
may contain (non-repeated) variables. A standard first order pattern-matching mechanism is
used to select a rule matching the top of a given tree. When a rule is selected, every variable
in the pattern is associated to the corresponding subtree. Then on the right hand side of the
rule, each occurrence of a variable denotes the result of a recursive call of the pretty printing
rules on the subtree. For atomic operators the type of their values is used to call, in an object
oriented manner, the adequate pretty-printing method. A special mechanism allows iterating
on lists. Variables in the pattern may be restricted to belong to some phylum for the rule to
be applicable.

Since pretty-printing may be context-dependent, one can give a name to a set of pretty-
printing rules and request that a variable should be pretty-printed using another set of rules.

3.2.2. Pretty-printing formats

A box language [5] is used to describe the concrete layout of patterns, and its definition
is very similar the definition of a tree structure: a box is either an atomic box or a compound
box.

- an atomic box is used to represent an individual object and to wrap an imaginary rectangle
around this object. In particular an atomic box is used to represent the lexical elements
of a language,

- @ compound box combines several boxes, on the basis of their imaginary surrounding
rectangles. It has itself an imaginary surrounding rectangle. Note that, as in typesetting,
it is not certain that all pixels fit within the rectangie, which is used as a scaffolding for
these constructions.

The combination of the elements of a compound box depends on the type of the box and
on separators. The type of a compound box specifies the position of the components of that
box. The set of combinators is not fixed, but the following ones are used often:

10













































